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Abstract. We investigate the thermal radiation and thermal near-field energy density of a metal-coated
semi-infinite body for different substrates. We show that the surface polariton coupling within the metal
coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a
polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In
contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be
explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the
influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple
semi-infinite and a coated semi-infinite body for different material combinations.

PACS. 44.40.+a Thermal radiation – 78.66.-w Optical properties of specific thin films – 05.40.-a Fluc-
tuation phenomena, random processes, noise, and Brownian motion – 41.20.Jb Electromagnetic wave
propagation; radiowave propagation

1 Introduction

The fluctuating electrodynamic near field close to the sur-
face of dielectric bodies due to thermal and quantum
fluctuations inside that bodies has come to the fore in
the last decade. The growing interest of researchers in
the investigation of fluctuating near fields is accompanied
by manifold new possibilities to measure the interesting
properties of such thermal near fields [1–7], which have
been developed in the last decade. For example, two of
these techniques are the thermal radiation scanning tun-
neling microscopy [8] and the usage of Bose-Einstein con-
densates [9]. Moreover, near field scanning thermal mi-
croscopy [10] (NSThM) is a new possibility to measure
the radiative heat transfer, which is itself related to the
properties of the fluctuating near field between dielectric
bodies [11–15]. From the experimental point of view it
should also be interesting to study the near field of coated
materials.

Not only the significance of the fluctuating near field in
scanning probe techniques or nanotechnological applica-
tions makes a theoretical investigation necessary and use-
ful. The electrodynamic near field is also of great theoreti-
cal interest, because it shows new and unexpected physical
properties. For example, it has been shown in recent publi-
cations [2] that coherent quasi-monochromatic evanescent
waves can exist in the thermal near field, although the lat-
ter is generated by fluctuating thermal sources. In order to
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Fig. 1. Sketch of the configuration used here: the bulk extends
in the regime z ≤ −d, the coating ranges from z = −d to z = 0,
and the half-space z > 0 is assumed to be vacuum.

study near-field effects one may calculate different physi-
cal quantities such as the cross-correlation tensor [2], the
local density of states (LDOS) [16] or the spectral energy
density [1] in the vicinity of the dielectric body, where this
body is usually assumed to be a semi-infinite medium.

In this paper we will study how a coating influences
the thermal electrodynamical near field of a semi-infinite
substrate (see Fig. 1). For that reason we calculate the en-
ergy density above the coated body. We will show that an
effect predicted for a free standing metallic film [17] can be
retrieved by using a polar material as substrate, whereas
for a metal substrate the thermal near-field energy density
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changes dramatically. Both cases are discussed and under-
stood with the help of surface plasmon coupling within
the coating. Furthermore we investigate how the coating
on different substrates influences the near-field radiative
heat transfer.

The near-field radiative heat transfer was already dis-
used in such a slab configuration for polar materials [18]
for an application in thermophotovoltaics and briefly for
metal substrates coated with different metals [19]. Here
we explicitly calculate the near-field radiative heat trans-
fer between a semi-infinite and a coated semi-infinite body,
showing in detail that the physical mechanisms leading to
different energy densities will leave their imprints in the
near-field radiative heat transfer. With this information
at hand it could for example be possible to give a better
understanding of the signal measured with a NSThM, and
to clarify the question whether that signal can be inter-
preted within a dipole-model [14,15] or whether it can be
modelled as the heat transfer between a semi-infinite and
a coated semi-infinite body. Furthermore, the results de-
rived in this and the preceding paper [17] can also serve as
a basis for the investigation of near-field effects for coated
materials, which are often used in experimental setups.

This paper is a direct follow-up of reference [17], so
we refer the reader to that paper for a brief discussion
of Rytov’s fluctuational electrodynamics [20]. When con-
sidering the geometry given in Figure 1, it is in princi-
ple necessary to construct the dyadic Green’s function
with observation point located in the regime z > 0, and
with sources within the coating or the substrate, respec-
tively. An alternative method exploiting the reciprocity
theorem is used, e.g., in reference [21]. Since we already
determined the dielectric Green’s function for a dielectric
film, as corresponding to the coating, in all details [17],
the dyadic Green’s function with source currents within
the coating can directly be taken from that reference. The
dyadic Green’s function with sources within the substrate
can be constructed in a straightforward way, so we present
here only the results and refer the interested reader to [17]
and [22,23], respectively. For convenience we use the same
notation as in our preceding paper [17], and for compara-
bility we use again for numerical computations the Drude
model for metals and the Reststrahlen formula for polar
materials with material parameters taken from [24,25].

This paper is organized in the following way: in Sec-
tion 2 we briefly discuss the thermal radiation of a coated
material. In Section 3 we study the thermal near field of
the coated material for different coatings and substrates
and show in Section 4 how the observed effects can be
interpreted with the surface plasmon polariton coupling
inside the coating. Finally, in the last section we calcu-
late the near-field radiative heat transfer and discuss the
influence of a metal coating.

2 Thermal radiation

In this paper we are mainly interested in the evanescent
near field of the coated semi-infinite body, but for the
sake of completeness we also report the results for the

radiative part. We will consider only coatings consisting
of a metallic film; results for coatings of polar material can
be found in reference [26].

In order to derive the thermal radiation of the coated
semi-infinite body we calculate the averaged z-component
〈Sz〉 of the Poynting vector outside the layered system in
Figure 1, which is assumed to be in local thermal equilib-
rium at temperature T , setting ε3 = ε0. Taking fluctuat-
ing source currents inside the bulk medium (the substrate)
with permittivity ε1 and inside the coating with permit-
tivity ε2, which contribute additively to the Poynting vec-
tor outside the layered system, we get after a lengthy but
straightforward calculation

〈Sz〉 =
∫

dω
E(ω, β)
(2π)2

∫
dλλe−2h′′

0 z
(
T total
⊥ + T total

‖
)

(1)

with the Bose-Einstein function

E(ω, β) =
�ω

e�ωβ − 1
. (2)

The transmission coefficients T total are given as the sum
of the bulk and coating transmission coefficients, T b +
T c, for TM- and TE-polarization (‖ and ⊥), respectively.
The transmission coefficients for the bulk contribution are
given by

T b
⊥ = 16|h2|2 Re(h0)Re(h1)

|D⊥|2 ,

T b
‖ = 16|h2|2 |k2|4

|k1|4
Re(h0)Re(h1ε1)

|D‖|2 (3)

with hi =
√

k2
0εi − λ2 for i = 0, 1, 2 and

D = a12a02e−ih2d − b12b02eih2d. (4)

The coefficients a and b are defined as

aij
⊥ := hi + hj , (5)

aij
‖ := hi

εj

εi
+ hj , (6)

bij
⊥ := hi − hj , (7)

bij
‖ := hi

εj

εi
− hj . (8)

The transmission coefficients for the coating have already
been calculated in [17] and can be stated as

T c
⊥ =

4Re(h0)
|D⊥|2

[
Re(h2)A⊥ + 2Im(h2)B⊥

]

T c
‖ =

4Re(h0)
|D‖|2

[
Re(h2εr2)A‖ + 2Im(h2εr2)B‖

]
(9)

with

A = |a12|2(e2h′′
2 d − 1

) − |b12|2(e−2h′′
2 d − 1

)
, (10)

B = Im
(

a12b12
(
e−2ih′

2d − 1
))

, (11)
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Fig. 2. Left: numerical result for the thermal radiation of a Pt-coated Au-substrate at temperature T = 300 K for different
thickness d of the coating, normalized to the black body value SBB given by the Stefan-Boltzmann law. The solid line is the
contribution of the coating and the dashed line that of the substrate, with the sum of both being given by the dotted line.
Right: here the role of the substrate and coating are interchanged, so that this panel shows the thermal radiation of a Au-coated
Pt-substrate at temperature T = 300 K.

where we have used the notation hi = h′
i + ih′′

i . Here and
in the following, we use the superscript c to indicate the
contributions due to the coating layer, while the super-
script b refers to the bulk. Restricting oneself to T c only,
and setting εr1 = 1, one can reproduce the results ob-
tained in our preceding paper [17] for the Poynting vector
and for the energy density associated with a free stand-
ing thin metal film. Even though the full transmission co-
efficients, which are rather complicated, could be refor-
mulated in term of Fresnel reflection coefficients [27], we
will not perform this procedure here, because in that case
we get different forms of transmission coefficients for the
propagating and evanescent modes (cf. [17]), i.e., we get
four equations instead of the two given in (3) and (9),
thus unnecessarily inflating the formalism. But it should
be kept in mind that the transmission coefficients, which
can be stated with one equation for the propagating part
with λ < k0 and the evanescent part with λ > k0, behave
in a quite different manner for propagating and evanes-
cent modes, respectively. This is a consequence of the fact
that h0 is purely real for propagating modes or purely
imaginary for evanescent modes, h0 = i

√
λ2 − k2

0 ≡ iγ.
Therefore, the evanescent component T total

ev does not con-
tribute to the expression for the Poynting vector (1), i.e.,
the Poynting vector covers information on the propagating
modes only.

Before we present numerical results for the Poynting
vector, we specify the limiting values of the transmission
coefficients for the propagating modes for different layer
thickness d, considering the two cases d � 1/h′′

2 and d �
1/h′′

2 , i.e., layers much thicker or thinner than the skin
depth of the coating material, given by

ds =
1

k0Im(
√

εr2)
≈ 1

h′′
2

. (12)

For thin coatings with d � ds the transmission coefficients
T c go linearly with thickness d to zero (cf. [17]), whereas
the transmission coefficients of the bulk T b converge to
the transmission coefficients of a semi-infinite body [11]

with permittivity ε1, i.e.,

T total
⊥ → T b

⊥ ≈ 4
Re(h1)Re(h0)

|a01
⊥ |2 ,

T total
‖ → T b

‖ ≈ 4
Re(h1εr1)Re(h0)

|a01
‖ |2 . (13)

In contrast, for thick coatings with d � ds the transmis-
sion coefficients of the bulk contributions go to zero and
the transmission coefficients of the coating converge to the
transmission coefficients of a semi-infinite body [11] with
permittivity ε2, which can be derived from equation (13)
by exchanging the index 1 with 2.

Therefore, the thermal radiation of a coated body
given by propagating modes only and being independent
of z (because h′′

0 = 0 for propagating modes), has differ-
ent values for different thicknesses d of the coating. In the
limit that the coating is very thick, i.e., d � ds, the radia-
tion is that of a half-space filled with the coating material
only. In the other limit of very thin coating, i.e. d � ds,
the radiation is that of a half-space filled entirely with
the bulk material. In general, the value of the Poynting
vector always falls between these two extremes. Thus it
seems that the thermal radiation maximum found for free
standing metallic films of a certain thickness [17] cannot
be observed for coated materials. This is illustrated in the
left panel of Figure 2, where there is a maximum in the
contribution of the coating, but this is overlayed by the
bulk contribution.

3 Thermal near field

Next, we discuss the non-radiative part of the fluctuating
near field in the vicinity of the coated substrate. To this
end, we investigate the energy density in the distance z
from the coated body, which can be written as

〈u(z)〉 =
∫

dω
E(ω, β)
(2π)2

∫
dλλ

λ2
s

2ω
e−2h′′

0 z

(
T total
⊥ + T total

‖
)

Re(h0)
,

(14)
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with λ2
s = 2k2

0 for propagating modes with λ < k0 and
λ2

s = 2λ2 for evanescent modes with λ > k0. Here the fac-
tor Re(h0) appearing in the transmission coefficients (3)
and (9) is canceled out by the denominator in equa-
tion (14), so that the energy density contains informa-
tion about the evanescent thermal near field. Due to these
evanescent modes the expression for the energy density
becomes dependent on the distance z from the layered sys-
tem, although the contribution of the propagating modes
is again independent of the observation distance z.

Taking the limits for thin and thick coatings is in
this case not easy, because for the evanescent modes the
transmission coefficients of the coating T c contain expres-
sions depending on h′′

2d in the numerator and denomi-
nator which compete with each other, in analogy to the
behaviour discussed in reference [17] for a single thin di-
electric layer. In contrast, the limit of the transmission
coefficients T b for a thin coating with h′′

2d � 1 reduces
for both propagating and evanescent modes to the expres-
sion (13) and vanishes for thick coatings, h′′

2d � 1.
In the evanescent-mode regime λ > k0 the energy den-

sity depends on z or, more precisely, on exp(−2h′′
0z). From

this fact and the form of the transmission coefficients given
in equation (9) it appears reasonable to discuss the cases
of thin and thick coatings, i.e., h′′

2d � 1 and h′′
2d � 1, in

the regions z � d and z � d separately. As follows from
reference [17], in the region z � d the transmission co-
efficients T c take the same form as those for a half-space
filled entirely with the coating material. It can be shown
that for z � d the bulk contribution T b becomes negli-
gible. This is a reasonable result, because the evanescent
waves with the lateral wave vector λ are damped at a
length scale λz ≈ 1 above the layered system. Therefore
for z � d the near field is dominated by evanescent waves
with λ−1 ≈ z � d, which do not carry information about
the restriction due to the finite layer thickness d. From
that it seems to be clear that for z � d one receives a
result which coincides with that for a bulk made up of the
coating material, i.e., with the permittivity ε2.

For d � ds and z � d the situation is more complex,
as far as TM modes are concerned. The TM-mode contri-
bution to the thermal energy density given by the coating
is in that region given by [17]

〈uc,ev
‖ 〉 ≈

∫
dω

E(ω, β)
(2π)2

2
z3ω

×
∫

dη η2
Im(r02

‖ )e−2η

|1 − r12
‖ r02

‖ (1 − 2η d
z )|2

[
2η

d

z
(1 + |r12

‖ |2)
]
, (15)

where r12 and r02 are the usual Fresnel reflection coeffi-
cients [27] for the interfaces at z = −d and z = 0, respec-
tively, and η ≡ λz. Through these reflection coefficients,
the energy density depends on the properties of bulk and
coating material. Let us restrict the following discussion to
metal coatings, so that |r02| ≈ 1. Now the energy density
contribution of the coating solely depends on the choice of
bulk material. If we choose as bulk material the vacuum
or a polar material, i.e., r12 = r02 or r12 ≈ r02, then the
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Fig. 3. Numerical results for the thermal near-field energy
density 〈uc

‖〉 of a Bi-coating on a GaN- and an Al-substrate
with temperature T = 300 K, as functions of the observa-
tion distance z from the layered system, normalized to the
corresponding black body value. We plot here the results for
different thicknesses d of the coating material, with the solid
line giving the thermal energy density above a semi-infinite Bi
medium. The dashed lines give the TM-mode part of thermal
energy density for d = 5 × 10−9 m, and the dotted lines for
d = 1 × 10−9 m. As indicated by the arrows, for the case of
the polar substrate GaN the energy density raises over that of
the semi-infinite Bi medium. On the other hand, the energy
density for the metal substrate Al is diminished in comparison
to that of the semi-infinite Bi medium at distances z � d.

expression for the energy density reduces to

〈uc,ev
‖ 〉 ≈

∫
dω

E(ω, β)
(2π)2

4
z2dω

∫
dη η Im(r02

‖ )e−2η. (16)

For a metal film or a coated polar material, respec-
tively, we get a 1/z2-dependence of the energy density,
as discussed in [17]. (For a metal coating obeying the
Hagens-Rubens approximation the power laws derived
in [17] also give reasonable approximations for a polar
substrate.) In contrast, if we take a second metal as bulk
material, then the reflection coefficients r12 between these
two metals should be small, so we can approximate the
denominator in equation (15) by 1. As a consequence we
find a 1/z4-dependence of the energy density for the TM-
modes for coated metals. Therefore, the 1/z3-dependence
of 〈u‖〉 provided by a half-space consisting solely of the
coating material for z � d changes to a 1/z2- or 1/z4-
dependence for z � d when considering a polar or metal
bulk with a metal coating. In Figure 3 this splitting is
shown for a Bi-coating of different thicknesses d on a GaN
bulk and an Al bulk, respectively. It is interesting to see
that the contribution of the coating material to the energy
density 〈uc

‖〉 for polar bulk materials becomes greater than
its bulk value for distances z � d, similar to what has been
discussed for thin metal films in reference [17].

Such a splitting can also be observed for the TE-mode
part of the energy density contribution of the coating ma-
terial 〈uc

⊥〉 for distances z � d, as shown in Figure 4. But
in contrast to 〈uc

‖〉 the energy density of the coating mate-
rial does never rise over its bulk value. From the numerical
result displayed in Figure 4 one can infer that for a coated
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Fig. 4. As Figure 3 but for 〈uc
⊥〉, i.e., for the TE-mode con-

tribution. Symbols are as in Figure 3. In this case the thermal
energy density of the coatings falls below that of a semi-infinite
Bi medium for d � ds, such that the thermal energy density
〈uc

⊥〉 obtained with a metal substrate is smaller than that for
a polar substrate at distances z � d.

polar bulk material 〈uc
⊥〉 again has a 1/z2-dependence for

z � d, whereas for coated metals there seems to be no
well-developed power law.

Now let us study the interplay of the contributions
of the bulk or substrate and that of the coating to the
thermal energy density for d � ds. From the discussion
above it follows that for z � d it is always 〈uc〉 which
dominates the total energy density, with the value of 〈uc〉
coinciding with its half-space value, i.e., being indepen-
dent of the coating thickness d. For distances z � d it is
a priori not clear whether the bulk or the coating contri-
bution dominates the energy density. However, one may
expect for a polar bulk material and a metal coating that
the bulk contribution does not play an important role be-
cause |r12| ≈ 1, whereas for a metal bulk |r12| is small, so
that waves generated by fluctuating source currents in the
bulk medium can propagate into and through the coating
and therefore contribute to the energy density in a much
more significant way at distances z � d. In Figure 5 the
numerical plots for Al/Bi and GaN/Bi systems confirm
this expectation.

Before finishing the discussion of the energy density,
we give in Figures 6 and 7 two further numerically com-
puted plots of 〈utotal

‖ 〉 and 〈utotal
⊥ 〉 for a 5 nm Bi-coating

on different bulk materials. One sees that the 1/z2- and
1/z4-power laws of 〈uc

‖〉 derived above leave their imprints
in the TM-mode part of the total energy density. For the
TE-mode part of the energy density one has to distinguish
between a metal-metal system and a polar material-metal
system, because for a metal-metal system at z � d the
bulk contributions dominate the energy density, but for a
polar bulk material this region is dominated by the con-
tribution of the metal coating only.

4 Surface plasmon coupling

The rise in the TM-mode part of the energy density for
a polar substrate coated with a metal can be explained

in terms of the low-frequency surface plasmon polariton
resonance within the coating. In the given geometry (see
Fig. 1) the surface modes are given by the zeros of the
function [28–30]

N‖ = 1 − r12
‖ r02

‖ e−2ih2d ≡ 0 (17)

with h2
2 = k2

0εr2−λ2. This function coincides with the de-
nominator of T c

‖ (cf. D‖ in Eq. (9)). For a non-magnetic
material these surface modes are purely TM-polarized
and do exist for materials with a negative permittivity
only [30]. For a polar substrate or bulk material with
a metal coating the Fresnel coefficient r12

‖ can be ap-
proximated by r02

‖ for all relevant frequencies. Within
this rough approximation the dispersion relation in equa-
tion (17) coincides with the dispersion relation of a free
standing metal film surrounded by a vacuum only. There-
fore the conclusions drawn for a free standing metal
film [17] can be applied to the metal-coated polar sub-
strate.

It follows [30,17] that for coatings thinner than
the skin depth ds the two degenerate surface plasmon
branches with the resonance frequency ωs ≈ ωp/

√
2 split

into two non-degenerate branches in the near field with
λ � k0 given by [30]

ω± =
ωp2√

2

√
1 ± e−λd, (18)

where for convenience the plasma model is used to describe
the permittivity. As expressed by equation (18) the res-
onance frequency of the high-frequency surface plasmon
polariton branch ω+ goes to the plasma frequency ωp2

of the coating, and the resonance frequency of the low-
frequency branch ω− goes to zero for very thin coatings,
i.e., for λd � 1. Due to the fact that the λ-integral for the
energy density in equation (14) is dominated by lateral
wave vectors of the order λ ≈ z−1, for z � d the splitting
of the surface plasmon branch cannot be observed, since
λd � 1. In this case one obtains the same energy den-
sity as in the case of an infinitely thick coating. On the
other hand, for observation distances z � d in the near
field above the coated material the surface plasmon cou-
pling leads to a splitting of the surface plasmon branches,
since λd � 1 in this case. Therefore at these distances
the resonance of the low-frequency branch ω− will go to
frequencies which are accessible thermally, leading to an
increase in the thermal near-field energy density.

In Figure 8 we plot the local density of states (LDOS)
defined in [16] for the TM-modes only. One observes how
the resonance at ωs splits into two resonances, where the
high-frequency resonance goes to ωp2 of the coating and
the low-frequency resonance goes straight to zero. Thus,
it reaches the thermally accessible region for thin coat-
ings and increases the LDOS in that region, and therefore
also the thermal near-field energy density leading to the
z−2-power law.

For a metal substrate coated with a metallic ma-
terial, the dispersion relation in equation (17) can be



428 The European Physical Journal B

-4

0

4

8

-10 -8 -6

lo
g(

 u
 / 

u B
B
)

log( z / m)

bulk

coating

0

4

8

-10 -8 -6

lo
g(

 u
 / 

u B
B
)

log( z / m)

bulk

coating

Fig. 5. Numerical results for the thermal near-field energy density 〈uc〉 and 〈ub〉 for a 5 nm Bi-coating on a Al- (left) and GaN-
(right) substrate, assuming T = 300 K. It is seen that for a thin coating with d � ds on a metal substrate the energy density
above the layered structure can be dominated by the contribution of the substrate for distances z � d, whereas this conclusion
cannot be drawn for a polar substrate.
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Fig. 6. Numerical results for the total thermal energy density
〈utotal

⊥ 〉 above the layered structure for a substrate consisting of
GaN, Pt or Al coated with a 5 nm layer of Bi at a temperature
T = 300 K.
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Fig. 7. Numerical results for the thermal near-field energy den-
sity 〈utotal

‖ 〉 above the layered structure for a substrate consist-
ing of GaN, Pt or Al coated with a 5 nm Bi layer at temperature
T = 300 K.

approximated in the near-field region with λ � k0 as

εr2 − εr1

εr2 + εr1

εr2 − 1
εr2 + 1

e−2λd = 1 (19)
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Fig. 8. Plot of the LDOS of the TM modes of a layered system
at the distance z = 10 nm for different thickness d of a Bi-
coating on a GaN-substrate. The frequencies are normalized
to the plasma frequency of the coating material.

which leads again within the plasma model to two sur-
face plasmon polariton branches. In this case, for z � d,
the resonance frequencies of the surface plasmon polariton
branches go to the plasma frequency of the coating ωp2 and
the surface plasmon resonance frequency ωp1/

√
2 for ar-

bitrarily thin coatings. Therefore the surface plasmon po-
lariton coupling will not lead to an increase of the LDOS
in the thermally accessible region, since for real metals
the plasma frequencies are much greater than the thermal
frequency ωth ≈ 1014 s−1 at T = 300 K. It follows that
the thermal near-field energy density is unaffected by the
surface plasmon coupling, leading to values below that of
the semi-infinite body, and to a quite different z−4-power
law for metal substrates as previously shown in Figure 3.

In Figure 9 we plot the LDOS for the TM-modes
for a Bi-coating on a Pt-substrate. The splitting of the
surface plasmon resonance into two resonances is clearly
visible. Here the high-frequency resonance goes to the
plasma frequency of the coating and the low-frequency
resonance goes to the surface plasma resonance of the sub-
strate given by ωp1/

√
2 = 8 × 1015 s−1 = 0.27 ωp2 with

ωp2 = 2.1 × 1016 s−1 [24].
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Fig. 9. Plot of the LDOS of the TM modes of a layered system
at the distance z = 10 nm for different thicknesses d of a Bi-
coating on a Pt-substrate. The frequencies are normalized to
the plasma frequency of the coating material.
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Fig. 10. Sketch of the configuration for the near-field radiative
heat transfer between a semi-infinite medium at z ≤ 0 and a
coated semi-infinite medium at z ≥ a.

5 Thermal near-field radiation

In this last section we discuss the radiative near-field heat
transfer between a semi-infinite body and a coated semi-
infinite body as sketched in Figure 10. Since the calcula-
tion follows the well-established rules, we proceed directly
to the result for the Poynting vector in this geometry, as-
suming T1 �= 0 for the material at z < 0 and T3 �= 0 for
the layered structure at z > a. With ε2 = ε0, the result
takes the form

〈Sz〉 =
∫

dω
E(ω, β1) − E(ω, β3)

(2π)2

×
{∫ k0

0

dλλ
(1 − |r21

⊥ |2)(1 − |R⊥|2)
|N ′

⊥|2

+
∫ ∞

k0

dλλ
4Im(r21

⊥ )Im(R⊥)e−2γa

|N ′
⊥|2

+ ‖
}

, (20)

where the symbol ‖ abbreviates the corresponding expres-
sions for the TM-modes, and with the usual Fresnel coef-
ficients r⊥ and r‖. In addition,

R =
r23 + r34e2ih3d

1 − r34r32e2ih3d
and N ′ = 1 − r21Re2ih2a (21)

for TE- and TM-polarization, respectively. It can be easily
checked that for d → ∞ this expression reduces to the
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Fig. 11. Numerical results for the near-field radiative heat
transfer between a semi-infinite Au-body with T1 = 300 K and
a coated semi-infinite GaN- or Pt-substrate with T3 = 0 K, as
functions of the gap width a. The thickness of the Bi-coating
is chosen to be 5 nm.

Polder-van-Hove (PvH) result [11–13] for the near-field
radiative heat transfer between two semi-infinite bodies.

It is well-known [11] that the radiative heat transfer
between two metals described by the PvH expression [19]
is dominated by the TE-modes, whereas the radiative heat
transfer between a metal and a polar material or two polar
materials, respectively, is dominated by the TM-modes
giving

〈S‖〉 ∝ 1
a2

and 〈S⊥〉 ∝ const. (22)

in the near-field region. Hence, the exponents of the
1/z3- and 1/z-dependence of the TM- and TE-mode parts
of the thermal near-field energy density of a half-space are
reduced by one. It is to be expected that the radiative heat
transfer between a semi-infinite body and a layered struc-
ture with a thin coating of thickness d � ds will again
resemble the usual PvH expression for a � d, since the
energy density above the layered structure coincides in
this case with that of a semi-infinite body consisting of
the coating material only. In the opposite case, for a � d,
the radiative heat transfer should be determined by the
change in the thermal near-field energy density described
in the preceding section.

Furthermore one expects that when taking a metal-
lic material for medium 1 the TE-modes of the layered
structure dominate the heat transfer, so that the radiative
heat transfer should behave similar to the thermal near-
field energy density 〈utotal

⊥ 〉 plotted in Figure 6. Choos-
ing Au for medium 1 we get the near-field radiative heat
transfer plotted in Figure 11. Indeed this figure fully con-
firms this expectation. Moreover, using a metal substrate
such as Pt for medium 4, the radiative heat transfer rises
over the PvH-result for a Au-Bi configuration, as is ex-
plained by the contribution of the Pt-substrate, so that in
this case the radiative heat transfer in the layered struc-
ture is in principle, given by the PvH-result for a Au-Pt
configuration.

On the other hand, choosing GaN for medium 1, we ex-
pect dominance of the TM-mode energy density depicted
in Figure 7, but with reduced power laws for a � d, i.e.,
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Fig. 12. Numerical results for the near-field radiative heat
transfer between a semi-infinite GaN-body with T1 = 300 K
and a coated semi-infinite GaN- or Pt-substrate with T3 = 0 K,
as functions of the gap width a. The thickness of the Bi-coating
is chosen to be 5 nm.

the 1/z2-power law should lead to a radiative heat transfer
proportional to 1/a, whereas the 1/z4-power law should
lead to a radiative heat transfer proportional to 1/a3. This
is exactly what is seen in the numerical results plotted in
Figure 12. Thus, it is possible to understand the near-field
radiative heat transfer qualitatively from the thermal en-
ergy density of the considered materials. Even more inter-
esting, the enhancement in the thermal near-field energy
density due to surface plasmon polariton coupling in the
coating material can be observed in the radiative heat
transfer in a slab geometry as sketched in Figure 10.

6 Conclusions

In this paper, we have given a discussion of the thermal
radiation and the thermal near-field energy density of a
metal-coated substrate. It has been shown that the max-
imum of the thermal radiation, which is observed for free
metal films at a certain thickness [17], does not appear
for coated materials, since for thin coatings the thermal
radiation of the substrate hides this maximum.

On the other hand, the increase in the thermal near-
field energy density of a free standing metal film [17] due to
surface plasmon polariton coupling inside the metal coat-
ing has also been found for a coated substrate, when a
polar material is used as substrate. For metal coatings on
metal substrates such an increase does not exist. More-
over, for metallic substrates the thermal near-field energy
density 〈utotal

‖ 〉 for observation distances z � d and coat-
ing thickness d � ds is some orders of magnitude smaller
than for a polar substrate (with the same coating), obey-
ing a rather different power law. This difference in be-
haviour resulting from the interchange of the substrate
material can be explained with the surface plasmon polari-
ton coupling: for a polar substrate the thermally accessible
LDOS will be enhanced due to the low-frequency surface
plasmon resonance, which goes to zero frequency for ar-
bitrarily thin coatings, whereas for a metal substrate this
resonance goes to the surface plasmon resonance of the
substrate for arbitrarily thin coatings and can therefore

not be accessed thermally for plasma frequencies much
greater than the thermal frequency.

In the last part, we have shown that the differences
investigated for the thermal near-field energy density of a
coated material leave their imprints in the near-field ra-
diative heat transfer between a semi-infinite body and a
coated semi-infinite body. Using a metal or a polar mate-
rial allows one to “select” the TE- or TM-mode part of the
thermal near-field energy density of the coated material to
dominate the radiative near-field heat transfer. Therefore,
it is possible to observe the TM-mode-enhancement due to
surface plasmon polariton coupling inside the coating by
thermal heat transfer experiments. Due to the fact that
the expressions for the near-field radiative heat transfer
and the vacuum friction [40,41] are fairly similar, the dis-
cussed effect should also be observable for vacuum friction
between coated materials.

Since a polarizable particle or an atom couples to the
electric field, the radiative heat transfer [14,15,31], the
spontaneous emission rate [32–35] near a hot body and
the thermal Casimir-Polder potential [36,37,31] should be
proportional to 〈E2〉 ∝ 〈u‖〉 in the near field, so that the
discussed enhancement of the TM-mode part of the ther-
mal near field should also enhance the near-field radia-
tive heat transfer between a small particle and a coated
material, the spontaneous emission rate of an atom near
a hot coated material, and the thermal Casimir-Polder
potential, respectively. Moreover, the spin flip rate of
atoms [38,39] above a layered structure, which is in princi-
ple proportional to 〈B2〉 ∝ 〈u⊥〉, will also be changed by
the use of thin coatings on appropriate substrates. Fur-
thermore, it appears possible that the coherence of the
thermal near field [2,3] can be controlled by the use of dif-
ferent metal coatings, since the surface plasmon resonance
frequency can be changed by the choice of the thickness of
the coating. In this sense the discussion of the thermal en-
ergy density has a much broader field of application than
the radiative heat transfer and the vacuum friction.
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